
Dynamic Data Driven Applications Systems (DDDAS) is a paradigm for systems analysis and design, and a framework that dynamically couples high-dimensional physical and other analysis models and methods, run-time measurements, and computational architectures. Some of the foremost early applications of DDDAS successes range from environmental assessment of adverse weather and natural disasters such as tornadic activity, hurricane formation and trajectory, wildfire monitoring and volcanic plume detection and tracking, to real-time structural health monitoring in aerospace systems and electrical power grids operation, and to medical and societal applications. Monitoring, understanding and predicting behaviors of complex and dynamic systems with DDDAS principles has expanded over the years to demonstrate new and advanced capabilities in other applications that span space situational awareness, unmanned aerial vehicle (UAV) design and operation, and complex systems adaptive management and security applications. Recent efforts reflect the digital age of information management such as multimedia analysis, electrical power grid control, other civilian infrastructures, and biohealth concerns. Underlying DDDAS developments are advances in sensor design, signal processing and filtering, as well as computational architectures and communications. The book highlights for the reader DDDAS-based advances, with more information available in the DDDAS society’s website: www.1dddas.org.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 139.09 Price includes VAT (France)
Softcover Book EUR 179.34 Price includes VAT (France)
Hardcover Book EUR 242.64 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others

Chapter © 2018

Introduction to Cyber-Physical Systems
Chapter © 2016

Review on design, development, and implementation of an unmanned aerial vehicle for various applications
Article 04 September 2024
Notes
Darema coined the term DDDAS in 1999, but she conceived the key concepts of the paradigm itself in 1980, when she was working in large nuclear radiation transport modeling for oil exploration through nuclear accelerator neutron and gamma-ray measurements; between 1980 and through the 80’s, in organizational private communications Darema discussed about “DDDAS” ideas under the title “Gedanken Laboratory” and presented it in [3].
References
- A. Aved, E. Blasch, Dynamic Data Driven Applications Systems (DDDAS), (2104) Website, www.1dddas.org.
- F. Darema, Grid Computing and Beyond: The Context of Dynamic Data Driven Applications Systems. Proceedings of the IEEE, 93 (3):692–697, (2005) ArticleGoogle Scholar
- F. Darema, Parallel Applications and the Gedanken Laboratory, Conference of the Society of Engineering Sciences, (1990) Google Scholar
- F. Darema et al., DDDAS: Dynamic Data Driven Applications Systems, US National Science Foundation (2005). https://www.nsf.gov/pubs/2005/nsf05570/nsf05570.htm
- F. Darema, The Next Generation Program, (1998). http://www.nsf.gov/pubs/1999/nsf998/nsf998.htm
- F. Darema, New software architecture for complex applications development and runtime support, Int. J. High-Performance Computation, Special Issue on Programming Environments, Clusters, and Comp. Grids for Sci. Comp., 14(3), (2000) Google Scholar
- Report of the August 2010 Multi-Agency Workshop on Info/Symbiotics/DDDAS: The power of Dynamic Data Driven Applications Systems, AFOSR-NSF (2010), available at https://s3.amazonaws.com/static.1dddas.org/docs/2010_DDDAS-InfoSymbioticsReport.pdf
- B. Plale, D. Gannon, D. Reed, S. Graves, K. Droegemeier, B. Wilhelmson, M. Ramamurthy, Towards dynamically adaptive weather analysis and forecasting in LEAD, International Conference Computational Science (2005). Google Scholar
- F. Darema, The Next Generation Software Program, International Journal of Parallel Programming 33 (2–3): 73–79, (2005). https://doi.org/10.1007/s10766-005-4785-6. ArticleGoogle Scholar
- G. Allen, Building a Dynamic Data Driven Application System for Hurricane Forecasting, International Conf. on Computational Science, 1034–1041 (2007) Google Scholar
- G. Allen, P. Bogden, R.A. Luettich, Jr, E. Seidel, R. Twilley, Designing a Dynamic Data Driven Application System for Coastal and Environmental Modeling, Grid-Based Problem Solving Environments, 275–293 (2007) Google Scholar
- D.S. Bernstein, A. Ridley, J. Cutler, A. Cohn, Transformative Advances in DDDAS with Application to Space Weather Monitoring, Project Report, Univ. Michigan (2015) Google Scholar
- C. Yang, M. Bakich, et al., Pose Angular-Aiding for Maneuvering Target Tracking, Int. Conf. on Info Fusion (2005) Google Scholar
- J. Dunık, O. Straka, et al., Random-Point-Based Filters: Analysis and Comparison in Target Tracking, IEEE Tr. on Aerospace and Elec. Sys., 51(2): 1403–1421, (2015) ArticleGoogle Scholar
- E.P. Blasch, E. Bosse, D.A. Lambert, High-Level Information Fusion Management and Systems Design, Artech House, Norwood, MA (2012) Google Scholar
- US National Science Foundation, Cyber-Physical Systems (CPS) Program Solicitation, https://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm
- N. Celik, S. Lee, K. Vasudevan, Y.-J. Son, DDDAS-based multi-fidelity simulation framework for supply chain systems, IIE Transactions, 42(5):325–341 (2010). https://doi.org/10.1080/07408170903394306ArticleGoogle Scholar
- F. Darema, The Next Generation Software Workshop – IPDPS’07, IEEE Int’l Parallel and Distributed Processing Symposium (IPDPS), (2007) Google Scholar
- F. Darema, Cyberinfrastructures of Cyber-applications-systems, Procedia Computer Science, 1 (1): 1287–1296 (2010). https://doi.org/10.1016/j.procs.2010.04.143. ArticleGoogle Scholar
- A.R. Chaturvedi, Society of simulation approach to dynamic integration of simulations, IEEE Winter Simulation Conference, 2125–2131 (2006) Google Scholar
- R. Fujimoto, J. Barjis, et al., Dynamic Data Driven Application Systems: Research Challenges and Opportunities, Winter Simulation Conference, 664–678 (2018) Google Scholar
- S. Sarkar, P. Chattopdhyay, A. Ray, S. Phoha, M. Levi, Alphabet size selection for symbolization of dynamic data-driven systems: An information-theoretic approach, American Control Conference (ACC), 5194–5199 (2015) Google Scholar
- V. Maroulas, K. Kang, I.D. Schizas, M.W. Berry, A learning drift homotopy particle filter, International Conference on Information Fusion, 1930–1937 (2015) Google Scholar
- E. Blasch, Enhanced air operations using JView for an air-ground fused situation awareness UDOP, IEEE/AIAA Digital Avionics Systems Conference (DASC) (2013). https://doi.org/10.1109/DASC.2013.6712597
- F. Darema, et al., Panel on Unifying Directions for Systems Engineering, ASME/IEEEInternational Conf. on Mechatronic and Embedded Sys. and App. (2011) Google Scholar
- F. Darema, Y.-J. Son, A. Patra, AFOSR Panel: Dynamic Data Driven Application Systems (DDDAS) in the Age of Big Compute and Big Data, ASME/IDETC International Design Engineering Technical Conferences (2014) Google Scholar
- J. Michopoulos, Ddema: A data driven environment for multiphysics applications, International Conference Computational Science (2003) Google Scholar
- G. Carmichael, D.N. Daescu, A. Sandu, T. Chai, Computational aspects of chemical data assimilation into atmosphere models, International Conference Computational Science (2003) Google Scholar
- C. Evangelinos, R. Chang, P.F.J. Lermusiaux, N.M. Patrikalakis, Rapid real-time interdisciplinary ocean forecasting using adaptive sampling and adaptive modeling and legacy codes: Component ecapsulation using xml, International Conference Computational Science (2003) Google Scholar
- J. Mandel, J. D. Beezley, L. Cobb, A. Krishnamurthy, Data Driven Computing by the Morphing Fast Fourier Transform Ensemble Kalman Filter in Epidemic Spread Simulations, DDDAS/ICCS Workshop, Procedia Computer Sci., 1, 1221–1229 (2010) ArticleGoogle Scholar
- M. Parashar, V. Matossian, W. Bangerth, H. Klie, B. Rutt, T. Kurc, U. Catalyurek, J. Saltz, M.F. Wheeler, Towards dynamic data-driven optimization of oil well placement, International Conference Computational Science, (2005) Google Scholar
- T.B. Trafalis, I. Adrianto, M.B. Richman, Active learning with support vector machines for tornado prediction, International Conference Computational Science (2007) Google Scholar
- L. Ramakrishnan, Y. Simmhan, B. Plale, Realization of dynamically adaptive weather analysis and forecasting in LEAD: Four years down the road, International Conference Computational Science (2007) Google Scholar
- L. Zhang, A. Sandu, Data assimilation in multiscale chemical transport models, International Conference Computational Science (2007) Google Scholar
- N. Roy, H.-L. Choi, D. Gombos, J. Hansen, J. How, S. Park, Adaptive observation strategies for forecast error minimization, International Conference Computational Science (2007) Google Scholar
- S. Ravela, Quantifying uncertainty for coherent structures, Procedia Computer Science, 9, 1187–1196 (2012) ArticleGoogle Scholar
- J. Michopoulos, P. Tsompanopoulou, E. Houstis, A. Joshi, Agent-based simulation of data-driven fire propagation dynamics, International Conference Computational Science (2004) Google Scholar
- J. Mandel, J.D. Beezley, L.S. Bennethum, S. Chakraborty, J.L. Coen, C.C. Douglas, J. Hatcher, M. Kim, A. Vodacek, A dynamic data driven wildland fire model, International Conference Computational Science (2007) Google Scholar
- J.D. Beezley, S. Chakraborty, J.L. Coen, C.C. Douglas, J. Mandel, A. Vodacek, Z. Wang, Real-time data driven wildland fire modeling, International Conference Computational Science (2008) Google Scholar
- R. Rodriguez-Aseretto, M.D. Leo, A. Cortés, J.S. Miguel-Ayanz, A data-driven model for big forest fires behavior prediction in Europe, Procedia Computer Science, 18, 186–1870 (2013) ArticleGoogle Scholar
- L. Wang, D. Chen, W. Liu, Y. Ma, Y. Wu, Z. Deng, DDDAS-Based Parallel Simulation of Threat Management for Urban Water Distribution Systems, Computing in Science & Engineering 16(1): 8–17 (2014). https://doi.org/10.1109/MCSE.2012.89ArticleGoogle Scholar
- A.K. Patra, M.I. Bursik, J. Dehn, M. Jones, M. Pavolonis, E.B. Pitman, T. Singh, P. Singla, E.R. Stefanescu, S. Pouget, P. Webley, Challenges in developing DDDAS based methodology for volcanic ash hazard analysis - effect of numerical weather prediction variability and parameter estimation, Procedia Computer Science 18, 1871–1880 (2013) ArticleGoogle Scholar
- A.K. Patra, E.R. Stefanescu, R.M. Madankan, M.I. Bursik, E.B. Pitman, P. Singla, T. Singh, P. Webley, Fast construction of surrogates for UQ central to DDDAS application to volcanic ash transport, Procedia Computer Science 29: 1227–1235 (2014) ArticleGoogle Scholar
- V.H.V.S. Rao, A. Sandu, A posteriori error estimates for DDDAS inference problems, Procedia Computer Science 29, 1256–1265 (2014) ArticleGoogle Scholar
- D. Metaxas, S. Venkataraman, C. Vogler, Image-based stress recognition using a model-based dynamic face tracking system, International Conference Computational Science (2004) Google Scholar
- D. Metaxas, G. Tsechpenakis, Z. Li, Y. Huang, A. Kanaujia, Dynamically adaptive tracking of gestures and facial expressions, International Conference Computational Science (2006) Google Scholar
- A. Majumdar, A. Birnbaum, D. Choi, A. Trivedi, S.K. Warfield, K. Baldridge, P. Krysl, A dynamic data driven grid system for intra-operative image guided neurosurgery, International Conference Computational Science (2005) Google Scholar
- J.T. Oden, K.R. Diller, C. Bajaj, J.C. Browne, J. Hazle, I. Babuska, J. Bass, L. Demkowicz, Y. Feng, D. Fuentes, S. Prudhomme, M.N. Rylander, R.J. Stafford, Y. Zhang, Development of a computational paradigm for laser treatment of cancer, International Conference Computational Science (2006) Google Scholar
- C. Bajaj, J.T. Oden, K.R. Diller, J.C. Browne, J. Hazle, I. Babuska, J. Bass, L. Bidaut, L. Demkowicz, A. Elliott, Y. Feng, D. Fuentes, B. Kwon, S. Prudhomme, R.J. Staord, Y. Zhang, Using cyber-infrastructure for dynamic data driven laser treatment of cancer, International Conference Computational Science (2007) Google Scholar
- I.S. Kim, J. Chandrasekar, A. Ridley, D.S. Bernstein, Data assimilation using the global ionosphere-thermosphere model, International Conference Computational Science, (2006) Google Scholar
- S. Ravela, J. Marshall, C. Hill, A. Wong, S. Stransky, Real-time observatory for laboratory simulation of planetary circulation, International Conference Computational Science (2007) Google Scholar
- A.V. Morozov, A.J. Ridley, D.S. Bernstein, N. Collins, T.J. Hoar, J.L. Anderson, Data assimilation and driver estimation for the Global Ionosphere–Thermosphere Model using the Ensemble Adjustment Kalman Filter, Journal of Atmospheric and Solar-Terrestrial Physics 104, 126–136 (2013) ArticleGoogle Scholar
- A.G. Burrell, A. Goel, A.J. Ridley, D.S. Bernstein, Correction of the Photoelectron Heating Efficiency Within the Global Ionosphere-Thermosphere Model Using Retrospective Cost Model Refinement, Journal of Atmospheric and Solar-Terrestrial Physics, 124, 30–38 (2015). ArticleGoogle Scholar
- C. Farhat, J.G. Michopoulos, F.K. Chang, L.J. Guibas, A.J. Lew, Towards a dynamic data driven system for structural and material health monitoring, International Conference Computational Science (2006) Google Scholar
- J. Cortial, C. Farhat, L.J. Guibas, M. Rajashekhar, Time-parallel exploitation of reduced-order modeling and sensor data reduction for structural and material health monitoring DDDAS, International Conference Computational Science (2007) Google Scholar
- E.E. Prudencio, P.T. Bauman, D. Faghihi, J.T. Oden, K. Ravi-Chandar, S.V. Williams, A dynamic data driven application system for real-time monitoring of stochastic damage, Procedia Computer Science 18, 2056–2065 (2013) ArticleGoogle Scholar
- E.E. Prudencio, P.T. Bauman, D. Faghihi, K. Ravi-Chandar, J.T. Oden, A Computational Framework for Dynamic Data Driven Material Damage Control, Based on Bayesian Inference and Model Selection, International Journal for Numerical Methods in Engineering 102 (3-4): 379–403 (April 2015). https://doi.org/10.1002/nme.4669ArticleMathSciNetMATHGoogle Scholar
- D. Allaire, J. Chambers, R. Cowlagi, D. Kordonowy, M. Lecerf, L. Mainini, F. Ulker, K. Willcox, A baseline offine/online DDDAS capability for self-aware aerospace vehicles, Procedia Computer Science, 18, 1959–1968 (2013) ArticleGoogle Scholar
- D. Allaire, D. Kordonowy, M. Lecerf, L. Mainini, K. Willcox, Multi-fidelity DDDAS methods with application to a self-aware aerospace vehicle, Procedia Computer Science 29, 1182–1192 (2014) ArticleGoogle Scholar
- L. Peng, K. Mohseni, Sensor driven feedback for puff estimation using unmanned aerial vehicles, International Conference on Unmanned Aircraft Systems (ICUAS), 562–569, (2014). https://doi.org/10.1109/ICUAS.2014.6842298.
- E. Blasch, P. Paces, P. Kostek, K. Kramer, Summary of Avionics Technologies, IEEE Aerospace and Electronics Systems Magazine 30(9): 6–11, (Sept. 2015) ArticleGoogle Scholar
- W. Silva, E. W. Frew, W. Shaw-Cortez, Implementing path planning and guidance layers for dynamic soaring and persistence missions, International Conference on Unmanned Aircraft Systems (ICUAS), 92–101, (2015). https://doi.org/10.1109/ICUAS.2015.7152279
- S. Imai, E. Blasch, A. Galli, F. Lee, C.A. Varela, Airplane Flight Safety Using Error-Tolerant Data Stream Processing, IEEE Aerospace and Electronics Systems Magazine, 32(4): 4–17 (April 2017) ArticleGoogle Scholar
- A. Sandu, W. Liao, G.R. Carmichael, D. Henze, J.H. Seinfeld, T. Chai, D. Daescu, Computational aspects of data assimilation for aerosol dynamics, International Conference Computational Science (2004) Google Scholar
- S. Ravela, Amplitude-position formulation of data assimilation, International Conference Computational Science (2006) Google Scholar
- B. Jia, K.D. Pham, E. Blasch, D. Shen, Z. Wang, G. Chen, Cooperative Space Object Tracking using Space-based Optical Sensors via Consensus-based Filters, IEEE Tr. on Aerospace and Electronics Systems, 52(3): 1908–1936 (2016) ArticleGoogle Scholar
- S. Ravela, Two extensions of data assimilation by field alignment, International Conference Computational Science (2007) Google Scholar
- P. Tagade, S. Ravela, On a quadratic information measure for data assimilation, American Control Conf., 598–603 (2014) Google Scholar
- T.C. Henderson, N. Boonsirisumpun, The impact of parameter estimation on model accuracy assessment, Procedia Computer Science 18, 1969–1978 (2013) ArticleGoogle Scholar
- P. Tagade, H. Seybold, S. Ravela, Mixture ensembles for data assimilation in dynamic data-driven environmental systems, Procedia Computer Science 29: 1266–1276 (2014) ArticleGoogle Scholar
- E.P. Blasch, Dynamic data driven applications system concept for information fusion,” Procedia Computer Science 18, 1999–2007 (2013) ArticleGoogle Scholar
- N. Virani, S. Marcks, S. Sarkar, K. Mukherjee, A. Ray, S. Phoha, Dynamic data driven sensor array fusion for target detection and classification, Procedia Computer Science, 18, 2046–2055 (2013) ArticleGoogle Scholar
- E. Blasch, G. Seetharaman, F. Darema, Dynamic Data Driven Applications Systems (DDDAS) modeling for Automatic Target Recognition, Proc. SPIE 8744 (2013) Google Scholar
- B. Smith, P. Chattopadhyay, A. Ray, T.R. Damarla, Performance robustness of feature extraction for target detection & classification, IEEE American Control Conference, (2014) Google Scholar
- T. Chin, Jr., K. Xiong, E. Blasch, CRAMStrack: Enhanced Nonlinear RSSI Tracking Using Circular Multi-Sectors for Threat Detection, Journal of Signal Processing Systems, June (2020) Google Scholar
- B. Uzkent, M.J. Hoffman, A. Vodacek, J.P. Kerekes, B. Chen, Feature matching and adaptive prediction models in an object tracking DDDAS, Procedia Computer Science 18, 1939–1948 (2013) ArticleGoogle Scholar
- R. Fujimoto, A. Guin, M. Hunter, H. Park, R. Kannan, G. Kanitkar, M. Milholen, S. Neal, P. Pecher, A dynamic data driven application system for vehicle tracking, Procedia Computer Science 29, 1203–1215 (2014) ArticleGoogle Scholar
- B. Uzkent, M.J. Hoffman, A. Vodacek, Integrating Hyperspectral Likelihoods in a Multidimensional Assignment Algorithm for Aerial Vehicle Tracking, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(9): 4325–4333, (2016). https://doi.org/10.1109/JSTARS.2016.2560220ArticleGoogle Scholar
- N. Nguyen, M.H.H. Khan, Context Aware Data Acquisition Framework for Dynamic Data Driven Applications Systems (DDDAS), IEEE Military Communications Conf., 334–341 (2013). https://doi.org/10.1109/MILCOM.2013.65
- N. Virani, J-W. Lee, S. Phoha, A. Ray, Learning context-aware measurement models,” American Control Conference (ACC), 4491–4496 (2015). https://doi.org/10.1109/ACC.2015.7172036
- L. Snidaro, J. Garcia Herrero, J. Llinas, E. Blasch, Context-Enhanced Information Fusion: Boosting Real-World Performance with Domain Knowledge, Springer (2016) BookGoogle Scholar
- A. Chaturvedi, J. Chi, S. Mehta, D. Dolk, SAMAS: Scalable architecture for multi-resolution agent-based simulation, International Conference Computational Science, (2004) Google Scholar
- N. Koyuncu, S. Lee, K.K. Vasudevan, Y-J. Son, P. Sarfare, DDDAS-basedmulti-fidelitysimulation for onlinepreventivemaintenancescheduling in semiconductorsupply chain, Winter Simulation Conference, 1915–1923, (2007) https://doi.org/10.1109/WSC.2007.4419819
- A. Boukerche, F.M. Iwasaki, R.B. Araujo, E.B. Pizzolato, Web-Based Distributed Simulations Visualization and Control with HLA and Web Services, IEEE/ACM International Symposium on Distributed Simulation and Real-Time Applications, 17–23, (2008). https://doi.org/10.1109/DS-RT.2008.30
- A.J. Aved, E. Blasch, Multi-INT Query Language for DDDAS Designs, Procedia Computer Science 51, 2518–2523 (2015) ArticleGoogle Scholar
- E. Blasch, S. Phoha, Special Issue: Dynamic Data-Driven Applications Systems (DDDAS) concepts in Signal Processing, J. Signal Processing Systems (2017) https://doi.org/10.1007/s11265-017-1253-7
- E.H. Abed, N.S. Namachchivaya, T.J. Overbye, M.A. Pai, P.W. Sauer, A. Sussman, Data driven power system operations, International Conference Computational Science, (2006) Google Scholar
- N. Celik, A.E. Thanos, J.P. Saenz, DDDAMS-based dispatch control in power networks, Procedia Computer Science 18, 1899–1908 (2013) ArticleGoogle Scholar
- E. Frew, B. Argrow, A. Houston, C. Weiss, J. Elston, An energy-aware airborne dynamic data-driven application system for persistent sampling and surveillance, Procedia Computer Science 18, 2008–2017 (2013) ArticleGoogle Scholar
- S. Neal, R. Fujimoto, M. Hunter, Energy consumption of Data Driven traffic simulations, Winter Simulation Conference (WSC), 1119–1130 (2016). https://doi.org/10.1109/WSC.2016.7822170
- G. R. Madey, A.-L. Barabsi, N.V. Chawla, M. Gonzalez, D. Hachen, B. Lantz, A. Pawling, T. Schoenharl, G. Szabo, P. Wang, P. Yan, Enhanced situational awareness: Application of DDDAS concepts to emergency and disaster management, International Conference Computational Science (2007) Google Scholar
- R.M. Fujimoto, N. Celik, H. Damgacioglu, M. Hunter, D. Jin, Y-J. Son, J. Xu, Dynamic data driven application systems for smart cities and urban infrastructures, Winter Simulation Conference, 1143–1157, (2016). https://doi.org/10.1109/WSC.2016.7822172
- K. Sudusinghe, I. Cho, M. Van der Schaar, S.S. Bhattacharyya, Model based design environment for data-driven embedded signal processing systems, Procedia Computer Science 29, 1193–1202 (2014). ArticleGoogle Scholar
- S. Chakravarthy, A. Aved, S. Shirvani, M. Annappa, E. Blasch, Adapting Stream Processing Framework for Video Analysis, Procedia Computer Science, 51, 2648–2657, (2015) ArticleGoogle Scholar
- H. Li, K. Sudusinghe, Y. Liu, J. Yoon, M. Van Der Schaar, E. Blasch, S.S. Bhattacharyya, Dynamic, Data-Driven Processing of Multispectral Video Streams, IEEE Aerospace and Electronics Systems Magazine, 32 (4): 50–57 (June 2017) ArticleGoogle Scholar
- P. Chew, N. Chrisochoides, S. Gopalsamy, G. Heber, T. Ingraffea, E. Luke, J. Neto, K. Pingali, A. Shih, B. Soni, P. Stodghill, D. Thompson, S. Vavasis, P. Wawrzynek, Computational science simulations based on web services, International Conference Computational Science (2003) Google Scholar
- O. Onolaja, R. Bahsoon, G. Theodoropoulos, Conceptual framework for dynamic trust monitoring and prediction, Procedia Computer Science, 1, 1241–1250 (2010) ArticleGoogle Scholar
- L. Pournajaf, L. Xiong, V. Sunderam, Dynamic data driven crowd sensing task assignment, Procedia Computer Science, 29: 1314–1323 (2014) ArticleGoogle Scholar
- E. Blasch, Y. Al-Nashif, S. Hariri, Static versus dynamic data information fusion analysis using DDDAS for cyber trust, Procedia Computer Science, 29, 1299–1313, 2014. ArticleGoogle Scholar
- Y. Badr, S. Hariri, Y. Al-Nashif, E. Blasch, “Resilient and Trustworthy Dynamic Data-Driven Application Systems (DDDAS) Services for Crisis Management Environments,” Procedia Computer Science, 51, 2623–2637 (2015) ArticleGoogle Scholar
- T. Chen, R. Bahsoon, G. Theodoropoulos, Dynamic qos optimization architecture for cloud-based DDDAS, Procedia Computer Science, 18, 1881–1890 (2013) ArticleGoogle Scholar
- R. Wu, B. Liu, Y. Chen, E. Blasch, H. Ling, G. Chen, A Container-based Elastic Cloud Architecture for Pseudo Real-time Exploitation of Wide Area Motion Imagery (WAMI) Stream, The Journal of Signal Processing Systems, 1–13 (Nov. 2016). https://doi.org/10.1007/s11265-016-1206-6.
- S. Shekar, Dynamic Data Driven Cloud Systems for Cloud-Hosted CPS, IEEE International Conference on Cloud Engineering Workshop (IC2EW),195–197(2016). https://doi.org/10.1109/IC2EW.2016.38
- C.-S. Li, F. Darema, V. Chang, Distributed behavior model orchestration in cognitive internet of things solution, Enterprise Information Systems, 12, 414–434 (2017). https://doi.org/10.1080/17517575.2017.1355984ArticleGoogle Scholar
- G. Seetharaman, A. Lakhotia, et al., Unmanned Vehicles Come of Age: The DARPA Grand Challenge, IEEE Computer Society Magazine, 39(12): 26–29 (2006) ArticleGoogle Scholar
- E. Blasch, D. Shen, B. Jia, Z. Wang, G. Chen, Y. Chen, K. Pham, Autonomy in use for space situation awareness, Proc. SPIE, 11017 (2019) Google Scholar
- E. Blasch, B. Pokines, Analytical Science for Autonomy Evaluation, IEEE National Aerospace and Electronics Systems Conference (2019) Google Scholar
- T. El-Ghazawi, V. Solker, V, Narayana, et al., Dynamically Adaptive Hybrid Nanoplasmonic Networks on Chips (NoCs), AD1096804, Technical Report (2019) Google Scholar
- Y. Zheng. E. Blasch, Z. Liu, Multispectral Image Fusion and Colorization, SPIE, Bellingham, Washington (2018) Google Scholar
- T. Mukherjee, P. Kumar, D. Pati, et al., LoSI: Large Scale Location Inference through FM Signal Integration and Estimation, IEEE Big Data Mining and Analytics, 2(4): 319–348 (Dec 2019). https://doi.org/10.26599/BDMA.2019.9020013. ArticleGoogle Scholar
- U. Majumder, E. Blasch, D. Garren, Deep Learning for Radar and Communications Automatic Target Recognition, Artech House (2020). Google Scholar
- R. Xu, Yu Chen, et al., An Exploration of Blockchain-Enabled Decentralized Capability-based Access Control Strategy for Space Situation Awareness, Optical Engineering, 58(4), 041609 (2019). https://doi.org/10.1117/1.OE.58.4.014609ArticleGoogle Scholar
- E. Blasch, J. S. Tiley, D. Sparkman, S. Donegan, M. Cherry, Data fusion methods for materials awareness, Proc SPIE 11423, (2020) Google Scholar
- F. Darema, E. Blasch, DDDAS Solutions for Border Patrol and Emergency Response Environments, IEEE Future Networks: Enabling 5G and Beyond (Oct. 2020) Google Scholar
- E. Blasch, R. Bohn, J. Gato, et al., Future Direction of DDDAS/InfoSymbiotics and Collaborations with Related Initiatives, Int’l., Conf. on DDDAS, (2020) Google Scholar
Acknowledgements
Work presented in this book was supported in part by the DDDAS Program of the Air Force Office of Scientific Research (AFOSR) as well as other funding agencies. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory or the U.S. Government, or any other funding entities.
Author information
Authors and Affiliations
- Air Force Office of Scientific Research, Arlington, VA, USA Erik P. Blasch
- InfoSymbiotics Systems Society, Boston, MA, USA Frederica Darema
- Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA Dennis Bernstein